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Abstract
The local behaviour of reversible one-dimensional cellular automata is
analysed. Based on Perron–Frobenius theory, it is proved by means of
irreducible components that the connectivity matrices of reversible automata
have a single eigenvalue equal to 1. The idempotent behaviour of such matrices
is also proved by Faddeev’s algorithm. The decomposition of these matrices
into triangular factors is used to find the inverse rule for a given reversible
automaton.

PACS numbers: 02.10.Yn, 05.65.+b, 45.70.Q j, 87.18.Bb

1. Introduction

The concept of cellular automata began with the work of von Neumann [16] on self-reproducing
systems. The study of cellular automata has acquired great interest because they are systems
whose operation is very simple but are able to yield complex behaviours. Relevant examples
are the works by Conway [3] and Wolfram in one-dimensional cellular automata [17].

A special type of cellular automaton is the reversible one, so called because of their
capacity to return to previously generated states. Reversible one-dimensional cellular automata
have been used for modelling and understanding reversible physical and chemical phenomena
[14, 17], as well as for implementing data coding systems [4, 15, 17].

Nevertheless, there are several unresolved aspects in these systems. Numerical
calculations by means of matrices representing their local behaviour [8, 11, 18] suggest that
these matrices are idempotent and have a single positive eigenvalue equal to 1. This type of
analysis has been developed in symbolic dynamics by Boyle [1], Lind and Marcus [7], and
for additive reversible automata by Kari [6].

The goal of this paper is to prove that the matrices representing the reversible behaviour
fulfil the previous features. We shall also show the relation of these results with the conservation
of the number of ancestors in reversible one-dimensional cellular automata. Finally, the
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triangular decomposition of these matrices will be used to obtain the inverse rule defining the
reversible behaviour of these systems.

The paper is organized as follows. Section 2 provides the basic concepts of one-
dimensional cellular automata and the presentation of their local behaviour by de Bruijn
diagrams and connectivity matrices. We shall explain how every one-dimensional cellular
automaton is simulated by another of neighbourhood size 2, therefore we just need to study
this type of automaton to include the rest. Section 3 applies the theory of non-negative and
irreducible matrices to prove that every connectivity matrix has a single positive eigenvalue
equal to 1. This property will be important in analysing the number of ancestors of a given
sequence. Using the Cayley–Hamilton theorem and Faddeev’s algorithm the idempotent
behaviour of such matrices is proved. Section 4 discusses the decomposition of the connectivity
matrices into triangular factors and how these factors are used for calculating the inverse rule
of every reversible automaton. Section 5 presents an example of the previous concepts and
the final section contains some concluding remarks of the paper.

2. Basic concepts of one-dimensional cellular automata

A one-dimensional cellular automaton is a system consisting of a finite set K of states of
cardinality k , and a one-dimensional array c representing space, each site of the array or cell
being with a state of K. Time advances in discrete steps and the dynamics is given by a local
mapping used at every time step. The local mapping has two operators, a neighbourhood of
2r + 1 cells where r is the neighbourhood radius, and a mapping ϕ or evolution rule. The
evolution rule maps all the sequences of 2r + 1 cells or neighbourhoods into elements of K .
For a given initial configuration c, the evolution rule ϕ is applied to each neighbourhood
of c at the same time, where each neighbourhood overlaps in 2r states with its contiguous
neighbourhoods. In this way, the evolution rule ϕ yields a new configuration c′.

This process is repeated indefinitely, obtaining at each time step a new configuration or
global state of the automaton. Thus, the evolution rule ϕ defines a global mapping � between
configurations. A special type of automaton is that where the evolution rule ϕ has another
inverse rule ϕ−1 such that the global mapping � is invertible. This type of automaton is called
reversible.

In this paper, finite sequences of states are widely used; for this reason some useful
definitions are provided. For a set K of states, the set of sequences of n cells formed by states
of K is presented by Kn, and K∗ is the set of all the finite sequences of states. For w1 ∈ Kn,
n � 2r + 1, let ϕ(w1) = w2 be the sequence in Kn−2r yielded by the action of ϕ over each
neighbourhood of w1. If ϕ(w1) = w2 then w1 is an ancestor of w2.

The properties of a reversible evolution rule ϕ are extensively studied by Hedlund [5].
Suppose that ϕ and ϕ−1 have the same neighbourhood radius, then the reversible automaton
has the following properties:

• Every finite sequence of states has the same number of ancestors as the others have. This
property may be called the uniform multiplicity of ancestors.

• The number of ancestors of each finite sequence is k2r .

• The ancestors of every sequence of length equal or greater than 2r + 1 cells have L initial
parts, a single common central part and R final parts.

• The values L and R are known as Welch indices and satisfy LR = k2r , that is they fulfil
the uniform multiplicity of ancestors.
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Reviewing the evolution rule with these properties, we can see whether a one-dimensional
cellular automaton is reversible. Using the graphical and matrix representation of this rule by
means of the de Bruijn diagrams is one way to do this.

2.1. De Bruijn diagrams

Several papers such as those by McIntosh [9, 10], Nasu [12] and Sutner [13] have used the
de Bruijn diagrams for representing and analysing the evolution rule of a one-dimensional
cellular automaton. The de Bruijn diagrams are defined as follows:

(i) The nodes of the diagram are all the sequences of 2r cells, i.e. the set K2r .
(ii) Let a, b be states of K and w1, w2 sequences of K2r−1. Then aw1 and w2b are sequences

of K2r representing nodes of the de Bruijn diagram. There is an arc from aw1 to
w2b if w1 = w2, and it represents the sequence aw1b ∈ K2r+1 which is a complete
neighbourhood of the automaton.

(iii) Every arc is labelled by the state in which the neighbourhood aw1b evolves according to
the evolution rule ϕ.

In this way, paths in the de Bruijn diagram are sequences of symbols formed in a one-
dimensional cellular automaton by its corresponding evolution rule. For n ∈ Z

+, if different
paths represent the same sequence w ∈ Kn in the de Bruijn diagram, then these paths are
different ancestors of w. A matrix representation of the ancestors of w is provided by the
de Bruijn diagram. The indices of the matrix are the nodes of the de Bruijn diagram. If n
ancestors begin at the node a and finish at the node b, then the entry ab of the matrix is equal
to n; in the opposite case the entry ab is zero.

Thus, we obtain a non-negative matrix called the connectivity matrix representing the
ancestors of w. There are initially k connectivity matrices, one for each state in K . For
a greater sequence, the product of matrices is used to yield the connectivity matrix of the
sequence. The sum of elements of each connectivity matrix gives the number of ancestors of
its associated sequence.

2.2. Cellular automaton simulated by another of neighbourhood size 2

In the evolution rule, neighbourhoods of 2r + 1 states map into a single one; in other words the
ancestors have 2r more states. Thus if a sequence has n states then its ancestors have n + 2r

states. Take all the sequences of 2r states and their ancestors, each one of 4r states. In this
way a mapping from K4r into K2r is defined. Each sequence in K2r can be associated with a
single state of a new set S of cardinality |S| = k2r .

Therefore, each sequence of K4r is associated also with a single element of S2, and
for a one-dimensional cellular automaton, the original mapping given by ϕ : K4r → K2r

is simulated by another mapping τ : S2 → S, i.e. by another automaton of neighbourhood
size 2. Of course S has a greater number of elements than K , nevertheless, we just need to
study automata of neighbourhood size 2 to understand all the other cases.

2.3. Simulating reversible automata

In order to simulate a reversible automaton by another of neighbourhood size 2, the following
procedure is defined:

(i) Select between the evolution rule ϕ and its inverse rule ϕ−1 the greatest neighbourhood
size.
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(ii) Represent both ϕ and ϕ−1 with this neighbourhood size. If some rule has a smaller
neighbourhood size, then add redundant states to each neighbourhood to obtain the
required length.

(iii) For the evolution rule ϕ, apply the procedure in section 2.2.

With this procedure, the original rule and its inverse are presented by another pair of
invertible rules of neighbourhood size 2, and both the de Bruijn diagram and the connectivity
matrices have a simple form.

The nodes of the de Bruijn diagram are the elements of the set K . If they are not
overlapping nodes, then every node is linked with all the others. The indices of the connectivity
matrices are the states in K . Since 2r + 1 = 2, hence 2r = 1 and every finite sequence of
states has k ancestors, fulfilling the uniform multiplicity property.

As both the original and the inverse rule have neighbourhood size 2, each state is formed
by L initial nodes and R final nodes in the de Bruijn diagram representing ϕ, with LR = k .
This is fulfilled by ϕ−1 as well, but in this case every state is formed by R initial nodes and L
final nodes in the corresponding de Bruijn diagram, also fulfilling that RL = k . A relevant
result by Nasu [12] is that both the set of initial nodes forming a given state and the set of
final nodes forming another (or perhaps the same) state have one and only one single common
node.

2.4. Connectivity matrices in reversible automata

For reversible one-dimensional cellular automata of neighbourhood size 2, the connectivity
matrix A of a finite sequence w ∈ Kn, n ∈ Z

+ has the following properties:

(i) The sum of elements in A is equal to k .
(ii) A is a 0–1 matrix because an element greater than 1 implies more than one path from

one node to another forming the same sequence. If it happens, since there is a path from
the final node to the initial one in another connectivity matrix B, then there is a sequence
w′ ∈ Km, m > n with connectivity matrix AB such that a power of AB has more than k

elements, contradicting the uniform multiplicity of ancestors.
(iii) Given the property by Nasu [12], there is a single 1 in the main diagonal of A.
(iv) For i �= j , if the entry aij = 1 in A, then the entry aji = 0. This avoids the existence

of distinct ancestors for the sequence composed by repetitions of w. Properties (iii) and
(iv) have a stronger consequence. There is a single node which is both an initial and
a final node. The other initial nodes are distinct from the rest of final nodes, yielding
property (v).

(v) For i �= j and aij = 1 in A, if aii = 0 then the ith column of A is zero. If ajj = 0 then
the j th row of A is zero.

Therefore, in reversible automata, a connectivity matrix has L equal nonzero rows and R
equal nonzero columns. Experimental observations [8, 11, 18] have indicated that these
connectivity matrices have a single positive eigenvalue equal to 1. Now the theory of
non-negative matrices will be used to prove this property.

3. Connectivity matrices and uniform multiplicity of ancestors

For a square matrix A of order r, let p(A) = λr −a1λ
r−1−a2λ

r−2−· · ·−ar be its characteristic
polynomial. Let λ be an eigenvalue of A and v its corresponding eigenvector, fulfilling that
Aλ = λv.
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Suppose that the indices of A are the nodes of some graph, and each entry of A is the
number of arcs between two nodes. Then, the maximum eigenvalue λA of A is useful for
knowing how the number of paths of finite length grows. The matrix A is irreducible if for
any entry aij there is an integer n > 0 such that aij > 0 in An. If Av = λAv then Anv = λn

Av

and for aij ∈ An

r∑
j=1

aijvj = λn
Avi . (1)

If the matrix is irreducible, then the eigenvector v of λA is positive [2, 7]. For c = min{v}
and d = max{v} we have

c

r∑
j=1

aij �
r∑

j=1

aijvj = λn
Avi � λn

Ad. (2)

Thus, the sum of elements in A has an upper bound:
r∑

i=1

r∑
j=1

aij �
r∑

i=1

d

c
λn

A = rd

c
λn

A. (3)

In equation (3), rd
c

is constant, and the sum of the elements in An (or the number of paths
of length n) is bounded by λn

A. So, the way in which the number of paths increases or decreases
when n increases is described by the behaviour of λn

A. Suppose that A is the connectivity
matrix of w ∈ K∗ for a reversible automaton of neighbourhood size 2. Then An shows the
number of ancestors of the sequence wn.

In this way, An reflects the properties of the reversible behaviour. The sum of elements
in An is equal to k and An holds the properties of the Welch indices in its rows and columns.
But if the connectivity matrices are not irreducible, then the eigenvector v of λA may have
zero elements and rd

c
is undefined. Thus, rd

c
λn

A does not correctly determine the behaviour of
the ancestors in A. In order to solve this problem, we shall use the irreducible components of
the connectivity matrices.

3.1. Irreducible components and λ = 1

Given a non-negative matrix A, its indices can be rearranged so that A will be composed of
diagonal blocks. The blocks Ai of A are irreducible components, and the growth of An is
defined by the growth of the blocks An

i . In order to obtain the irreducible components Ai , we
shall obtain the communicating classes of A [7]. For m,n > 0, if aij > 0 in Am and aji > 0
in An, then the indices i, j belong to the same communicating class.

Once these classes are detected, the matrix A is reordered by permuting rows and columns
such that these classes are diagonal blocks. Since the elements of each class connect to each
other, every diagonal block is irreducible. The characteristic polynomial of A does not
change by permutations of rows or columns, so the diagonal blocks are used for computing
its characteristic polynomial in the following way:

p(A) = p(A1)p(A2) · · ·p(An) (4)

where A1, A2, . . . , An are irreducible diagonal components. The eigenvalues of A are the
eigenvalues of every Ai , and the greatest eigenvalue λA defines the growth of An.

Lemma 1. In a reversible one-dimensional cellular automaton of neighbourhood size 2 in
ϕ and ϕ−1, every connectivity matrix A has one and only one irreducible component of one
element.
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Table 1. Recurrent implementation of Faddeev’s algorithm.

A1 = A p1 = Tr A1 B1 = A1 − p1I

A2 = AB1 p2 = Tr A2 B2 = A2 − p2I

.

.

.
.
.
.

.

.

.

Ar−1 = ABr−2 pr−1 = Tr Ar−1 Br−1 = Ar−1 − pr−1I

Ar = ABr−1 pr = Tr Ar Br = Ar − prI

Proof. A has one and only one diagonal element aii = 1, therefore i is a communicating class.
For i �= j , if aij = 1 then the j th row is zero and aij does not connect with any other row. For
i �= m, if ami = 1 then ami connects with the ith row but no element in this row connects with
an element of the mth row because aij = 1 implies that the j th row is zero. Thus no other
elements different from aii form another communicating class and there is just one irreducible
component of one element. �

From lemma 1 the following result is provided:

Corollary 1. In a reversible one-dimensional cellular automaton of neighbourhood size 2 in
both invertible rules, every connectivity matrix has a single positive eigenvalue 1.

Proof. Since in every connectivity matrix A there is a single irreducible component Ai of one
element, its eigenvalue is the value of the element. As aii = 1, hence λA = 1. �

Thus, in a connectivity matrix A there is only one irreducible component Ai , L states
reach Ai and R states leave it as the Welch indices indicate. Now we shall explain how λA = 1
defines the growth of An.

Theorem 1. In a reversible one-dimensional cellular automaton of neighbourhood size 2 in
both invertible rules, for all n > 0 the sum of elements of An is defined by Lλn

AR and is equal
to k .

Proof. Since A has only one irreducible component Ai of one element, hence An has the same
irreducible component An

i , where |An
i | = λn

A. If there are no more components, then only An
i

is useful to yield sequences of length n. As L different states reach Ai and R distinct states
leave Ai , the sum of elements in An is given by

Lλn
AR = kλn

A since λA = 1 hence kλn
A = k

for all n > 0. �

Thus, the single positive eigenvalue of a connectivity matrix determines the uniform
multiplicity of ancestors in a reversible one-dimensional cellular automaton. Another way to
prove this is using Faddeev’s algorithm, which also shows the idempotent behaviour of the
connectivity matrices.

3.2. Faddeev’s algorithm and idempotent behaviour

For a square matrix A of order r, Faddeev’s algorithm [2] defines a recurrent form to calculate
the coefficients of its characteristic polynomial using the trace of A (table 1).

Faddeev’s algorithm detects the cycles of length 1, 2 up to r. These cycles are the
irreducible components of A,and with them the coefficients of the characteristic polynomial are
calculated step by step. For a connectivity matrix A of a reversible automaton of neighbourhood
size 2 and k states, this procedure has the following form:
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(i) Since there is only a positive diagonal element aii = 1 in A, hence p1 = 1.
(ii) In B1, the diagonal element bii is 0 and the other diagonal elements are −1.

(iii) Take the product AB1 and take the ith row in the matrix A with aii = 1. If j is a nonzero
column in B1 and i = j then bjj = 0 and aiibjj = 0. For 0 � m � k − 1 and m �= j , if
aim = 1 then amj = 0 so bmj = 0, therefore aimbmj = 0.

(iv) For 0 � m � k − 1 and m �= i, if i �= j and aij = 0 then aimbmj = 0 because if aim = 1
then m �= j and amj = 0, therefore bmj = 0.

(v) If i �= j and aij = 1 then aiibij = 1 because bij = aij ; but aijbjj = −1 and both terms
nullify each other. For 0 � m � k − 1, m �= i and m �= j , if aim = 1 then amj = 0 and
bmj = 0, thus aimbmj = 0.

(vi) The same happens for the L− 1 remaining nonzero rows in A, because they are copies of
the ith row with aii = 1. Thus AB1 = A2 = 0, therefore pi = 0 (i = 2, . . . , k).

Thus another proof for corollary 1 is provided.

Alternative proof of corollary 1. For the characteristic polynomial of A, Faddeev’s algorithm
shows that p1 = 1 and pi = 0 for i = 2, . . . , k, then the polynomial has the form

p(A) = λk − λk−1 = λk−1(λ − 1) = 0. (5)

Equation (5) shows an eigenvalue λA = 1 and another eigenvalue λ = 0 of multiplicity
k − 1. �

Faddeev’s algorithm also shows the idempotent behaviour of the connectivity matrices.

Theorem 2. In a reversible one-dimensional cellular automaton of neighbourhood size 2 in
both invertible rules, every connectivity matrix A is idempotent.

Proof. Let us consider the characteristic polynomial p(A) given in equation (5). The Cayley–
Hamilton theorem states that every square matrix obeys its characteristic polynomial [2]. In
this way Ak − Ak−1 = 0, i.e. Ak = Ak−1 and therefore A is idempotent. �

4. Obtaining the inverse rule by decomposition in triangular factors

Another relevant question is whether the connectivity matrices are useful to find the inverse
rule. For this reason, the decomposition of a matrix A in triangular factors will be used.

4.1. Decomposition in triangular factors

Let r be the rank of A, Gauss’s elimination applied to A yields an upper triangular matrix Ts

with r nonzero rows [2]. In order to obtain Ts , some operations are performed between rows
of A. Each operation is defined by T A, where T is a lower triangular matrix. Thus Gauss’s
elimination is taken as the successive product of matrices, yielding another lower triangular
matrix Ti which represents all the operations over A:

Ts = TiA. (6)

Ti is nonsingular [2] and has an inverse T −1
i , hence the following result is provided:

T −1
i Ts = T −1

i TiA = A (7)

where T −1
i is also a lower triangular matrix.
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4.2. Factorizing the connectivity matrices

Since these matrices have L equal nonzero rows and each matrix has a single irreducible
component of one element, their rank is 1. Given a connectivity matrix A, its indices are
reordered such that the diagonal element 1 is in the first row. As the reordered matrix A keeps
its L equal nonzero rows, its factor Ts has a single nonzero row.

In order to take the reordered matrix A into Ts , the first row of A must eliminate the
other L − 1 nonzero rows. Since they are equal, the constant to eliminate the rows is −1.
The first row is subtracted from the other nonzero rows, yielding Ts . Thus Ti has diagonal
elements 1 and the constant −1 is placed in the first column of Ti in the same positions as the
nonzero rows of A:

TiA = Ts .


1 0 · · · · · · · · · · · · · · · 0
...

...

−1 · · · 1 0 · · · · · · · · · 0
...

...

−1 · · · · · · · · · 1 0 · · · 0
...

...







1 · · · 1 · · ·
...

...

1 · · · 1 · · ·
...

...

1 · · · 1 · · ·
...

...




=




1 · · · 1 · · ·
...

...

0 · · · · · · 0
...

...

0 · · · · · · 0
...

...




Matrix Ti Matrix A = Matrix Ts

L − 1 rows with −1 in the first column L identical nonzero rows 1 nonzero row

Given Ti , its inverse T −1
i must eliminate the elements −1 from the first column of Ti .

Thus T −1
i copies each row of Ti , therefore T −1

i has a main diagonal of 1s. The first row of Ti

must be subtracted from the other nonzero rows in Ti . In this way, T −1
i has elements equal

to 1 in its first column in the same positions where the elements equal to −1 are in the first
column of Ti :

T −1
i Ts = A.




1 0 · · · · · · · · · · · · · · · 0
...

...

1 · · · 1 0 · · · · · · · · · 0
...

...

1 · · · · · · · · · 1 0 · · · 0
...

...







1 · · · 1 · · ·
...

...

0 · · · · · · 0
...

...

0 · · · · · · 0
...

...




=




1 · · · 1 · · ·
...

...

1 · · · 1 · · ·
...

...

1 · · · 1 · · ·
...

...




Matrix T −1
i Matrix Ts = Matrix A

L rows with 1 in the first column 1 nonzero row L identical nonzero rows

4.3. Finding the inverse rule

A connectivity matrix A is factorized into two triangular matrices T −1
i and Ts . For a given

sequence, the first row in Ts shows the different final states of the ancestors. The same
happens to the first column of T −1

i , it shows the initial states of the ancestors of the sequence.
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0 1

State 0

State 1

De Bruijn diagram

Evolution
Rule

0
0 0

1

1
1

01

Figure 1. Reversible automaton of neighbourhood size 2.

Then, the first column from T −1
i and the first row from Ts have all the necessary information

to find the inverse rule:

(i) Obtain the connectivity matrix of each state.
(ii) Reorder each matrix such that the diagonal element 1 is in the first row.

(iii) Factorize every connectivity matrix into its triangular factors.
(iv) For each state, take the first row vs from Ts and the first column vi from T −1

i .
(v) For each state, rearrange vs and vi in the original order, that is rearrange its indices from

0 to k − 1.
(vi) For each state, in the row vs replace every 1 by the value of its index.

(vii) For every neighbourhood of two cells, multiply the row vs of the left neighbour by the
column vi of the right neighbour. The result is the state to which the neighbourhood
evolves in the inverse rule.

This procedure allows us to find the inverse rule of a reversible one-dimensional cellular
automaton simulated by another of neighbourhood size 2. Since the endings of the ancestors
intersect in one element [12], the product vsvi provides the inverse evolution of each
neighbourhood

5. Illustrative example

Take the following reversible automaton of two states and neighbourhood size 2 in figure 1,
the connectivity matrix of state 0 shows an eigenvalue λA = 1 and another λ = 0 of
multiplicity 1: ∣∣∣∣−λ 1

0 1 − λ

∣∣∣∣ = λ2 − λ = λ(λ − 1) = 0.

The idempotent behaviour of the connectivity matrix is shown by its characteristic polynomial
(equation (8)): (

0 1
0 1

)k

=
(

0 1
0 1

)k−1

=
(

0 1
0 1

)
. (8)

For each state, the triangular factors from the connectivity matrices are in table 2. Take the first
rows from the matrices Ts , rearrange them in their original order and replace the 1 elements
by their corresponding indices. Then multiply every row by every first column of each matrix
T −1

i . Thus the inverse mapping of each neighbourhood is obtained (table 3), in this way, the
inverse rule of the reversible automaton is presented in figure 2.
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State 0

State 1

De Bruijn diagram

Inverse
Evolution

Rule

0 1

0
0 1

1

1
1

00

Figure 2. Inverse rule of the automaton in figure 1.

Table 2. Connectivity matrices from the states 0 and 1.

State Connectivity matrix Rearrange matrix T −1
i Ts

0

(
0 1
0 1

) (
1 0
1 0

) (
1 0
1 1

) (
1 0
0 0

)

1

(
1 0
1 0

) (
1 0
1 0

) (
1 0
1 1

) (
1 0
0 0

)

Table 3. Inverse mapping of each neighbourhood.

Neighbourhood Product Neighbourhood Product

00 (0 1)

(
1
1

)
= 1 01 (0 1)

(
1
1

)
= 1

10 (0 0)

(
1
1

)
= 0 11 (0 0)

(
1
1

)
= 0

6. Concluding remarks

The Classical theory of matrices, in particular some results such as the Cayley–Hamilton
theorem and well-known matrix methods such as Faddeev’s algorithm and the decomposition
in triangular factors are useful to find important properties of the local behaviour in reversible
one-dimensional cellular automata. Besides, the representation of every automaton by another
of neighbourhood size 2 is a very convenient form to analyse reversible automata. A further
work is to apply other theoretical results about eigenvalues and Jordan normal forms to obtain
more features of the local behaviour. This paper has only used the matrix representation of de
Bruijn diagrams; a straightforward application of graph theory results may be useful to obtain
more properties of these diagrams.
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